
GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting

Chi Yan1* Delin Qu1,2* Dong Wang1 Dan Xu4

Zhigang Wang1 Bin Zhao1,3 Xuelong Li1,3
1Shanghai AI Laboratory 2Fudan University 3Northwestern Polytechnical University

4The Hong Kong University of Science and Technology

Abstract

In this paper, we introduce GS-SLAM that first utilizes
3D Gaussian representation in the Simultaneous Localiza-
tion and Mapping (SLAM) system. It facilitates a better
balance between efficiency and accuracy. Compared to re-
cent SLAM methods employing neural implicit representa-
tions, our method utilizes a real-time differentiable splat-
ting rendering pipeline that offers significant speedup to
map optimization and RGB-D re-rendering. Specifically,
we propose an adaptive expansion strategy that adds new
or deletes noisy 3D Gaussian in order to efficiently recon-
struct new observed scene geometry and improve the map-
ping of previously observed areas. This strategy is essen-
tial to extend 3D Gaussian representation to reconstruct the
whole scene rather than synthesize a static object in exist-
ing methods. Moreover, in the pose tracking process, an
effective coarse-to-fine technique is designed to select reli-
able 3D Gaussian representations to optimize camera pose,
resulting in runtime reduction and robust estimation. Our
method achieves competitive performance compared with
existing state-of-the-art real-time methods on the Replica,
TUM-RGBD datasets. The source code will be released
upon acceptance.

1. Introduction
Simultaneous localization and mapping (SLAM) has
emerged as a pivotal technology in fields such as
robotics [5], virtual reality [8], and augmented reality [22,
36]. The goal of SLAM is to construct a dense/sparse map
of an unknown environment while simultaneously track-
ing the camera pose. Traditional SLAM methods em-
ploy point/surfel clouds [18, 29, 39, 43], mesh represen-
tations [23], voxel hashing [10, 16, 21] or voxel grids [19]
as scene representations to construct dense mapping, and
have made considerable progress on localization accuracy.
However, these methods face serious challenges in obtain-
ing fine-grained dense maps.

Recently, Neural Radiance Fields (NeRF) [17] have

3D Gaussian Scene

Representation

Real-Time Tracking

and Mapping

ESLAM. 3 FPS Point-SLAM. 3 FPS Ours. 386 FPS GroundTruth

a) Illustration of GS-SLAM

b) The Rendering Performance of GS-SLAM

Figure 1. The illustration of the proposed GS-SLAM. It first uti-
lizes the 3D Gaussian representation and differentiable splatting
rasterization pipeline in SLAM, achieving real-time tracking and
mapping performance on GPU. Besides, benefiting from the splat-
ting rasterization pipeline, GS-SLAM achieves a 100× faster ren-
dering FPS and more high-quality full image results than the other
SOTA methods.

been explored to enhance SLAM methodologies and exhibit
strengths in generating high-quality, dense maps with low
memory consumption [32]. In particular, iMAP [32] uses
a single multi-layer perceptron (MLP) to represent the en-
tire scene, which is updated globally with the loss between
volume-rendered RGB-D image and ground-truth observa-
tions. NICE-SLAM [51] utilizes a hierarchical neural im-
plicit grid as scene map representation to allow local up-
dates for reconstructing large scenes.

Moreover, ESLAM [9] and Co-SLAM [38] utilize axis-
aligned feature planes and joint coordinate-parametric en-
coding to improve the capability of scene representation,
achieving efficient and high-quality surface map reconstruc-
tion. In practical mapping and tracking steps, these meth-
ods only render a small set of pixels to reduce optimization
time, which leads to the reconstructed dense maps lack-
ing the richness and intricacy of details. In essence, it is

1

ar
X

iv
:2

31
1.

11
70

0v
3

 [
cs

.C
V

]
 5

 J
an

 2
02

4

a trade-off for the efficiency and accuracy of NeRF-based
SLAM since obtaining high-resolution images with the ray-
based volume rendering technique is time-consuming and
unacceptable. Fortunately, recent work [11, 15, 44] with
3D Gaussian representation and tile-based splatting tech-
niques has shown great superiority in the efficiency of high-
resolution image rendering. It is applied to synthesize novel
view RGB images of static objects, achieving state-of-the-
art visual quality for 1080p resolution at real-time speed.
Inspired by this, we extend the rendering superiority of 3D
Gaussian scene representation and real-time differentiable
splatting rendering pipeline for the task of dense RGB-D
SLAM and manage to jointly promote the speed and accu-
racy of NeRF-based dense SLAM, as shown in Fig. 1.

To this end, we propose GS-SLAM, the first RGB-D
dense SLAM that utilizes 3D Gaussian scene representation
coupled with the splatting rendering technique to achieve a
better balance between speed and accuracy. Specifically, we
first derive an analytical formulation for optimizing camera
pose tracking and dense mapping with RGB-D re-rendering
loss, which achieves a fast and accurate backward by sort-
ing and α-blending overlapped 3D Gaussians. For map-
ping, we propose an adaptive expansion strategy to add new
or delete noisy 3D Gaussian representations to efficiently
reconstruct new observed scene geometry while improving
the mapping of the previously observed areas. This strat-
egy makes every mapping step optimize the currently visi-
ble and correct 3D Gaussian representations rather than ir-
relevant ones from previously observed areas, significantly
improving the mapping effectiveness and reducing artifacts
in reconstructed dense maps and rendered images. In cam-
era tracking process, an effective coarse-to-fine technique
is designed to first estimate coarse camera pose using the
loss of re-rendered low-resolution images, then a set of re-
liable 3D Gaussian scene representations are selected to re-
fine camera pose by re-rendering high-resolution images,
resulting in the running time reduction and performance
promotion. We perform extensive evaluations on a selection
of indoor RGB-D datasets and demonstrate state-of-the-art
performance on dense neural RGB-D SLAM in terms of
tracking, rendering, and mapping. Overall, our contribu-
tions include:

• We propose GS-SLAM, the first 3D Gaussian-based
dense RGB-D SLAM approach, which takes advantage
of the fast splatting rendering technique to boost the map-
ping optimizing and pose tracking, achieving real-time
and photo-realistic reconstruction performance.

• We present an adaptive 3D Gaussians expansion strategy
to efficiently reconstruct new observed scene geometry
and develop a coarse-to-fine technique to select reliable
3D Gaussians to improve camera pose estimation.

• Our approach achieves competitive performance on
Replica and TUM-RGBD datasets in terms of tracking,

mapping and runs at 8.43 FPS, resulting in a better bal-
ance between efficiency and accuracy.

2. Related Work

Dense Visual SLAM. The existing real-time dense visual
SLAM systems are typically based on discrete handcrafted
features or deep-learning embeddings, and follow the map-
ping and tracking architecture in [14]. DTAM [20] first
introduces a dense SLAM system that uses photometric
consistency to track a handheld camera and represent the
scene as a cost volume. KinectFusion [41] performs cam-
era tracking by iterative-closest-point and updates the scene
via TSDF-Fusion. BAD-SLAM [26] proposes to jointly op-
timize the keyframe poses and 3D scene geometry via a di-
rect bundle adjustment (BA) technique. In contrast, recent
works integrate deep learning with the traditional geometry
framework for more accurate and robust camera tracking
and mapping, such as DROID-SLAM [34], CodeSLAM [1],
SceneCode [50], and NodeSLAM [31], have made signifi-
cant advances in the field, achieving more accurate and ro-
bust camera tracking and mapping performance.
Neural Implict Radiance Field based SLAM. For NeRF-
based SLAM, existing methods can be divided into three
main types: MLP-based methods, Hybrid representa-
tion methods, and Explicit methods. MLP-based method
iMAP [32] offers scalable and memory-efficient map repre-
sentations but faces challenges with catastrophic forgetting
in larger scenes. Hybrid representation methods combine
the advantages of implicit MLPs and structure features, sig-
nificantly enhancing the scene scalability and precision. For
example, NICE-SLAM [51] integrates MLPs with multi-
resolution voxel grids, enabling large scene reconstruction,
and Vox-Fusion [45] employs octree expansion for dynamic
map scalability, while ESLAM [9] and Point-SLAM [24]
utilize tri-planes and neural point clouds respectively to im-
prove the mapping capability. As for the explicit method
proposed in [35], it stores map features in voxel directly,
without any MLPs, enabling a faster optimization. Instead
of representing maps with implicit features, GS-SLAM uti-
lizes the 3D Gaussian representation, efficiently renders im-
ages using splatting-based rasterization, and optimizes pa-
rameters directly with backward propagation.
3D Gaussians Representation. Several recent approaches
have use 3D Gaussians for shape reconstruction, such as
Fuzzy Metaballs [12, 13], VoGE [37], 3DGS [11]. No-
tably, 3DGS [11] demonstrates great superiorities in high-
quality real-time novel-view synthesis. This work repre-
sents the scene with 3D Gaussians and develops a NeRF-
style fast rendering algorithm to support anisotropic splat-
ting, achieving SOTA visual quality and fast high-resolution
rendering performance. Beyond the rendering superiorities,
Gaussian splatting holds an explicit geometry scene struc-

2

3D Gaussian

Initialization

SH

Scene Representation

3D position

Covariance

SH

Opacity

Cam Pose

Optimizable

parameter

Rasterization

C
a

p
tu

re

Optimization

outlier floater

historical point

back-projection

Adaptive 3D Gaussian

Expansion

Real-time Camera Tracking

and Scene Reconstruction
Coarse to Fine

Tracking

coarse rendering

fine rendering

Figure 2. Overview of the proposed method. We aim to use 3D Gaussian to represent the scene and use the rendered RGB-D image for
inverse camera tracking. GS-SLAM proposes a novel Gaussian expansion strategy to make the 3D Gaussian feasible to reconstruct the
whole scene and can achieve real-time tracking, mapping, and rendering performance on GPU.

ture and appearance, benefiting from the exact modeling of
scenes representation [47]. This promising technology has
been rapidly applied in several fields, including 3D gen-
eration [3, 33, 48], dynamic scene modeling [15][44][46],
and photorealistic drivable avatars [52]. However, currently,
there is no research addressing camera pose estimation or
real-time mapping using 3D Gaussian models due to the in-
herent limitations of the prime pipeline [11], i.e., prerequi-
sites of initialized point clouds or camera pose inputs [25].
In contrast, we derive the analytical derivative equations for
pose estimation in the Gaussian representation and imple-
ment efficient CUDA optimization.

3. Methodology

Fig. 2 shows the overview of the proposed GS-SLAM. We
aim to estimate the camera poses of every frame {Pi}Ni=1

and simultaneously reconstruct a dense scene map by giving
an input sequential RGB-D stream {Ii,Di}Mi=1 with known
camera intrinsic K ∈ R3×3. In Sec. 3.1, we first introduce
3D Gaussian as the scene representation S and the RGB-
D render by differentiable splatting rasterization. With the
estimated camera pose of the keyframe, in Sec. 3.2, an
adaptive expansion strategy is proposed to add new or delete
noisy 3D Gaussian representations to efficiently reconstruct
new observed scene geometry while improving the mapping
of the previously observed areas. For camera tracking of ev-
ery input frame, we derive an analytical formula for back-
ward optimization with re-rendering RGB-D loss, and fur-
ther introduce an effective coarse-to-fine technique to min-
imize re-rendering losses to achieve efficient and accurate
pose estimation in Sec. 3.3.

3.1. 3D Gaussian Scene Representation

Our goal is to optimize a scene representation that captures
geometry and appearance of the scene, resulting in detailed
dense map and high-quality novel view synthesis. To do
this, we model the scene as a set of 3D Gaussian coupled

with opacity and spherical harmonics

G = {Gi : (Xi,Σi,Λi,Y i)|i = 1, ..., N}. (1)

Each 3D Gaussian scene representation Gi is defined by po-
sition Xi ∈ R3, 3D covariance matrix Σi ∈ R3×3, opacity
Λi ∈ R and 1 degree Spherical Harmonics (Y) per color
channel, total of 12 coefficients for Y i ∈ R12. In order to
reduce the learning difficulty of the 3D Gaussians [53], we
parameterize the 3D Gaussian covariance as:

Σ = RSSTRT , (2)

where S ∈ R3 is a 3D scale vector, R ∈ R3×3 is rotation
matrix, storing as a 4D quaternion.
Color and Depth Splatting Rendering. With the opti-
mized 3D Gaussian scene representation parameters, given
the camera pose P = {R, t}, the 3D Gaussians G are pro-
jected into 2D image plane for rendering with:

Σ′ = JP−1ΣP−TJT , (3)

where J is the Jacobian of the affine approximation of the
projective function. After projecting 3D Gaussians to the
image plane, the color of one pixel is rendered by sorting
the Gaussians in depth order and performing front-to-back
α-blending rendering as follows:

Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) , (4)

where ci represents color of this Gaussian obtained by
learned Y Spherical Harmonics coefficients, αi is the den-
sity computed by multiplying 2D covariance Σ′ with opac-
ity Λi. Similarly, the depth is rendered by

D̂ =
∑
i∈N

diαi

i−1∏
j=1

(1− αj) , (5)

where di denotes the depth of the center of the i-th 3D Gaus-
sian, which is obtained by projecting to z-axis in the camera
coordinate system.

3

3.2. Adaptive 3D Gaussian Expanding Mapping

The 3D Gaussian scene representations are updated and
optimized on each selected keyframe for stable mapping.
Given the estimated pose of each selected keyframes, we
first apply the proposed adaptive expansion strategy to add
new or delete noisy 3D Gaussians from the whole scene
representations to render RGB-D images with resolution
H × W , and then the updated 3D Gaussian scene repre-
sentations are optimized by minimizing the geometric depth
loss Ld and the photometric color loss Lc to the sensor ob-
servation depth D and color C,

Lc =

HW∑
m=1

∣∣∣Cm − Ĉm

∣∣∣ , Ld =

HW∑
m=1

∣∣∣Dm − D̂m

∣∣∣ . (6)

The loss optimizes the parameters of all 3D Gaussians that
contribute to the re-rendering of these keyframe images.
Adaptive 3D Gaussian Expansion Strategy. At the first
frame of the RGB-D sequence, we first uniformly sample
half pixels from a whole image with H ×W resolution and
back-projecting them into 3D points X with corresponding
depth observation D. The 3D Gaussian scene representa-
tions are created by setting position as X and initializing
zero degree Y coefficients with RGB color Ci. The opac-
ities are set to pre-defined values, and the covariance is set
depending on the spatial point density, i.e.,

{Gi = (Pi,Σinit,Λinit,Ci)|i = 1, ...,M}, (7)

where M equals to HW/2. This initialized scene repre-
sentation is optimized with re-rendering loss on the first
RGB-D image. Note that only half of the pixels are used to
initialize the scene, leaving space to conduct adaptive den-
sity control of Gaussians that splits large points into smaller
ones and clones them with different directions to capture
missing geometric details.

Adding Step: to obtain a complete map of the en-
vironment, the 3D Gaussian scene representations should
be able to model the geometry and appearance of newly
observed areas. Specifically, at every keyframe, we add
first re-render RGB-D images using historical 3D Gaus-
sian scene representations and calculate cumulative opacity
T =

∑
i∈N αi

∏i−1
j=1 (1− αj) for each pixel. We label one

pixel as un-reliable xun if its cumulative opacity T is too
low or its re-rendering depth D̂ is far away from observed
depth D, i.e.,

T < τT or |D − D̂| > τD. (8)

These selected un-reliable pixels mostly capture new ob-
served areas. Then we back-project these un-reliable pixels
to 3D points Pun, and a set of new 3D Gaussians at Pun

initialized as Eq. 7 are added into scene representations to
model the new observed areas.

outlier floater
historical

Gaussian
back-projection

N
ew

 o
b

serv
ed

 A
reaH

is
to

ri
ca

l
A

re
a

Figure 3. Illustration of the proposed adaptive 3D Gaussian ex-
pansion strategy. GS-SLAM inhibits the low-quality 3D Gaussian
floaters in the current frustum according to depth.

Deleting Step: as shown in Fig. 3, there are some float-
ing 3D Gaussians due to the unstable adaptive control of
Gaussians after optimization with Eq. 6. These floating 3D
Gaussians will result in a low-quality dense map and a re-
rendered image containing lots of artifacts. To address this
issue, after adding new 3D Gaussians, we check all visi-
ble 3D Gaussians in the current camera frustum and signifi-
cantly decrease opacity Λi of 3D Gaussians whose position
is not near the scene surfaces. Formally, for each visible
3D Gaussian, we draw a ray r(t) from camera origin o and
its position Xi = (xi, yi, zi), i.e., r(t) = o + t(Xi − o).
Then, we can find a pixel with coordinate (u, v) where this
ray intersects image plane and corresponding depth obser-
vation D. The 3D Gaussians are deleted by degenerating its
opacity as follows:

Gi : Λi ⇒ Gi : ηΛi, if D − dist(Xi,Puv) > γ, (9)

where Puv is the world coordinates of the intersected pixel
calculated with the camera intrinsic and extrinsic. dist(·, ·)
is the Euclidean distance, and η (much smaller than 1) and γ
are the hyperparameters. Note that we decrease the opacity
of floating 3D Gaussians in front of the scene surfaces to
make our newly added 3D Gaussians well-optimized.

3.3. Tracking and Bundle Adjustment

In the parallel camera tracking phase of our work, we first
employ a common straightforward constant velocity as-
sumption to initialize new poses. This assumption trans-
forms the last known pose based on the relative transfor-
mation between the second-to-last pose and the last pose.
Then, the accurate camera pose P is optimized by minimiz-
ing re-rendering color loss, i.e.,

Ltrack =

M∑
m=1

∣∣∣Cm − Ĉm

∣∣∣
1
, min

R,t
(Ltrack), (10)

where M is the number of sampled pixels for re-rendering.

4

Differentiable Pose Estimation. According to Eqs. (3)
and (4), we observe that the gradient of the camera pose
P is related to three intermediate variables: Σ′, ci and the
projected coordinate mi of Gaussian Gi. By applying the
chain rule of derivation, we obtain the analytical formula-
tion of camera pose P:

∂Lc

∂P
=

∂Lc

∂C

∂C

∂P
=

∂Lc

∂C

(
∂C

∂ci

∂ci
∂P

+
∂C

∂αi

∂αi

∂P

)
=

∂Lc

∂C

∂C

∂αi

(
∂αi

∂Σ′
∂Σ′

∂P
+

∂αi

∂mi

∂mi

∂P

)
=

∂Lc

∂C

∂C

∂αi

(
∂αi

∂Σ′
∂(JP−1ΣP−TJT)

∂P
+

∂αi

∂mi

∂(KPXi)

∂Pdi

) , (11)

where di denotes the z-axis coordinate of projection mi.
The item ∂C

∂ci

∂ci

∂P can be eliminated because we only con-
cern about the view-independent color in our tracking im-
plementation. In addition, we find that the intermediate gra-
dient ∂(KPXi)

∂Pdi
is the deterministic component for the cam-

era pose P. So we simply ignore the backpropagation of
∂(JP−1ΣP−TJT)

∂P for efficiency. More details can be found
in the supplemental materials.

Coarse-to-Fine Camera Tracking. Re-rendering and op-
timizing camera pose with all image pixels would be prob-
lematic since artifacts in images will cause a drifted camera
tracking. To address this issue, as shown in Fig. 2, in the
differentiable pose estimation step for each frame, we first
take advantage of image regularity to render only a sparse
set of pixels and optimize tracking loss to obtain a coarse
camera pose. This coarse optimization step significantly
eases the influence of detailed artifacts. Further, we use
this coarse camera pose and depth observation to select re-
liable 3D Gaussians, which guides GS-SLAM to re-render
informative areas with clear geometric structures to refine
coarse camera pose via further optimizing tracking loss on
new rendering pixels.

Specifically, in the coarse stage, we first render a coarse
image Îc with resolution H/2 × W/2 at uniformly sam-
pled image coordinates and optimize tracking loss in Eq. 10
for Tc iterations, and the obtained camera pose is denoted
as Pc. In the fine stage, we use a similar technique with
adaptive 3D Gaussian expansion strategy in Section 3.2 to
select reliable 3D Gaussian to re-render full-resolution im-
ages while ignoring noisy 3D Gaussians that cause artifacts.
In detail, we check all visible 3D Gaussians under coarse
camera pose Pc, and remove 3D Gaussians whose position
is far away to the scene surface. Formally, for each visi-
ble 3D Gaussians Gi with position Xi, we project it to 2D
image plane using coarse camera pose Pc and camera in-
trinsics. Given the projected pixel’s depth observation Di

and the distance di that is between 3D Gaussians Gi and
the camera image plane, the reliable 3D Gaussians are se-

lected as follows:

Gselected = {Gi|Gi ∈ G and abs(Di − di) ≤ ε},

Îf = F(u, v,Gselected),
(12)

where we use the selected reliable 3D Gaussians to re-
render full resolution images Îf . u, v denote the pixel co-
ordinates in Îf , and F represent color splatting rendering
function. The final camera poses P is obtained by optimiz-
ing tracking loss in Eq. 10 with Îf for another Tf iterations.
Note that Îc and Îf are only re-rendered at previously ob-
served areas, avoiding rendering areas where 3D scene rep-
resentations have not been optimized in the mapping pro-
cess. Also, we add keyframes based on the proportion of
the currently observed image’s reliable region to the overall
image. At the same time, when the current tracking frame
and most recent keyframe differ by more than a threshold
value µk, this frame will be inserted as a keyframe.
Bundle Adjustment. In the bundle adjustment (BA) phase,
we optimize the camera poses P and the 3D Gaussian scene
representation S jointly. We randomly select K keyframes
from the keyframe database for optimization, using the loss
function similar to the mapping part. For pose optimization
stability, we only optimize the scene representation S in the
first half of the iterations. In the other half of the iterations,
we simultaneously optimize the map and the poses. Then,
the accurate camera pose P is optimized by minimizing re-
rendering color loss, i.e.,

Lba =
1

K

K∑
k=1

HW∑
m=1

∣∣∣Dm − D̂m

∣∣∣
1
+ λm

∣∣∣Cm − Ĉm

∣∣∣
1
, min
R,t,S

(Lba). (13)

4. Experiment
4.1. Experimental Setup

Dataset. To evaluate the performance of GS-SLAM,
we conduct experiments on the Replica [28], and TUM-
RGBD [30]. Following [9, 24, 38, 45, 51], we use 8 scenes
from the Replica dataset for localization, mesh reconstruc-
tion, and rendering quality comparison. The selected three
subsets of TUM-RGBD datasets are used for localization.
Baselines. We compare our method with the existing state-
of-the-art NeRF-based dense visual SLAM: iMAP [32],
NICE-SLAM [51], Vox-Fusion [45], CoSLAM [38], ES-
LAM [9] and Point-SLAM [24]. The rendering perfor-
mance of CoSLAM [38] and ESLAM [9] is conducted from
the open source code with the same configuration in [24].
Metric. For mesh reconstruction, we use the 2D Depth L1
(cm) [51], the Precision (P, %), Recall (R, %), and F-score
with a threshold of 1 cm to measure the scene geometry.
For localization, we use the absolute trajectory (ATE, cm)
error [30] to measure the accuracy of the estimated camera
poses. We further evaluate the rendering performance us-
ing the peak signal-to-noise ratio (PSNR), SSIM [40] and

5

Table 1. Tracking comparison (ATE RMSE [cm]) of the proposed
method vs. the state-of-the-art methods on Replica dataset. The
running speed of methods in upper part is lower than 5 FPS, ∗

denotes the reproduced results by running officially released code.
Method Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 avg

Point-SLAM [24] 0.56 0.47 0.30 0.35 0.62 0.55 0.72 0.73 0.54
NICE-SLAM [51] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.06
Vox-Fusion∗ [45] 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94 3.09

ESLAM [9] 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63
CoSLAM [38] 0.70 0.95 1.35 0.59 0.55 2.03 1.56 0.72 1.00

Ours 0.48 0.53 0.33 0.52 0.41 0.59 0.46 0.7 0.50

Table 2. Tracking ATE [cm] on TUM-RGBD [30]. Our method
achieve a comparable performance among the neural vSLAMs. ∗

denotes the reproduced results by running officially released code.
Method #fr1/desk #fr2/xyz #fr3/office #Avg.
DI-Fusion [7] 4.4 2.0 5.8 4.1
ElasticFusion [43] 2.5 1.2 2.5 2.1
BAD-SLAM [27] 1.7 1.1 1.7 1.5
Kintinuous [42] 3.7 2.9 3.0 3.2
ORB-SLAM2 [18] 1.6 0.4 1.0 1.0
iMAP∗ [32] 7.2 2.1 2 9.0 6.1
NICE-SLAM [51] 4.3 31.7 3.9 13.3
Vox-Fusion∗ [45] 3.5 1.5 26.0 10.3
CoSLAM [38] 2.7 1.9 2.6 2.4
ESLAM [9] 2.3 1.1 2.4 2.0
Point-SLAM 2.6 1.3 3.2 2.4
Ours 3.3 1.3 6.6 3.7

LPIPS [49] by following [24]. To be fair, we run all the
methods on a dataset 10 times and report the average results.
More details can be found in the supplemental materials.
Implementation Details. GS-SLAM is implemented in
Python using the PyTorch framework, incorporating CUDA
code for Gaussian splatting and trained on a desktop PC
with a 5.50GHz Intel Core i9-13900K CPU and NVIDIA
RTX 4090 GPU. We extended the existing code for differen-
tiable Gaussian splatting rasterization with additional func-
tionality for handling depth, pose, and cumulative opacity
during both forward and backward propagation. In all ex-
periments, we set the learning rate of pose {R, t} to 0.0002
and 0.0005, photometric loss weighting 0.8, geometric loss
weighting 0.3, and keyframe window size K = 10. In the
Replica dataset, we use 10 iterations for tracking and 100 it-
erations for mapping with max keyframe interval µk = 30,
while in the challenging TUM RGB-D dataset, we use 30
iterations for tracking, with max keyframe interval µk = 5.

4.2. Evaluation of Localization and Mapping

Evaluation on Replica. Tracking ATE: Tab. 1 illustrates
the tracking performance of our method and the state-
of-the-art methods on the Replica dataset. Our method
achieves the best or second performance in 7 of 8 scenes and
outperforms the second-best method Point-SLAM [24] by
0.4 cm on average at 8.34 FPS. It is noticeable that the sec-
ond best method, Point-SLAM [24] runs at 0.42 FPS, which
is 20× slower than our method, indicating that GS-SLAM
achieve a better trade-off between the tracking accuracy
and the runtime efficiency. Mapping ACC: Tab. 3 report
the mapping evaluation results of our method with other
current state-of-the-art visual SLAM methods. GS-SLAM

Table 3. Reconstruction comparison of the proposed method vs.
the state-of-the-art methods on Replica dataset.

Method Metric Rm0 Rm1 Rm2 Off0 Off1 Off2 Off3 Off4 Avg.

NICESL
AM [51]

Depth L1 ↓ 1.81 1.44 2.04 1.39 1.76 8.33 4.99 2.01 2.97
Precision ↑ 45.86 43.76 44.38 51.40 50.80 38.37 40.85 37.35 44.10
Recall↑ 44.10 46.12 42.78 48.66 53.08 39.98 39.04 35.77 43.69
F1↑ 44.96 44.84 43.56 49.99 51.91 39.16 39.92 36.54 43.86

VoxFus
ion [45]

Depth L1↓ 1.09 1.90 2.21 2.32 3.40 4.19 2.96 1.61 2.46
Precision↑ 75.83 35.88 63.10 48.51 43.50 54.48 69.11 55.40 55.73
Recall↑ 64.89 33.07 56.62 44.76 38.44 47.85 60.61 46.79 49.13
F1↑ 69.93 34.38 59.67 46.54 40.81 50.95 64.56 50.72 52.20

CoSLA
M [38]

Depth L1↓ 0.99 0.82 2.28 1.24 1.61 7.70 4.65 1.43 2.59
Precision↑ 81.71 77.95 73.30 79.41 80.67 55.64 57.63 79.76 73.26
Recall↑ 74.03 70.79 65.73 71.46 70.35 52.96 56.06 71.22 66.58
F1↑ 77.68 74.20 69.31 75.23 75.16 54.27 56.83 75.25 69.74

ESL
AM [9]

Depth L1↓ 0.63 0.62 0.98 0.57 1.66 7.32 3.94 0.88 2.08
Precision↑ 74.33 75.94 82.48 72.20 65.74 70.73 72.48 72.24 73.27
Recall↑ 87.37 87.01 84.99 88.36 84.38 81.92 79.18 80.63 84.23
F1↑ 80.32 81.10 83.72 79.47 73.90 75.92 75.68 76.21 78.29

Ours

Depth L1↓ 1.31 0.82 1.26 0.81 0.96 1.41 1.53 1.08 1.16
Precision↑ 64.58 83.11 70.13 83.43 87.77 70.91 63.18 68.88 74.00
Recall↑ 61.29 76.83 63.84 76.90 76.15 61.63 62.91 61.50 67.63
F1↑ 62.89 79.85 66.84 80.03 81.55 65.95 59.17 64.98 70.15

Room 0 Room 1 Room 2 Office 3

N
IC

E
-S

L
A

M
[5

1]
Vo

x-
Fu

si
on

[4
5]

C
oS

L
A

M
[3

8]
E

SL
A

M
[9

]
O

ur
s

G
ro

un
d

Tr
ut

h

Figure 4. Reconstruction performance comparation of the pro-
posed GS-SLAM and SOTA methods on the Replica dataset.

achieves the best performance in Depth L1 (1.16cm) and
Precision (74.0%) metrics on average. For Recall and F1
scores, GS-SLAM performs comparably to the second best
method CoSLAM [38]. The visualization results in Fig. 4
show that GS-SLAM achieves satisfying construction mesh
with clear boundaries and details.

Evaluation on TUM-RGBD. Tab. 2 compares GS-SLAM
with the other SLAM systems in TUM-RGBD dataset. Our
method surpass iMAP [32], NICE-SLAM [51] and Vox-
fusion [45], and achieve a comparable performance, aver-
age 3.7 cm ATE RSME, with the SOTA methods. A gap to
traditional methods still exist between the neural vSLAM
and the traditional SLAM systems, which employ more so-
phisticated tracking schemes [24].

6

O
ff

ic
e

1
O

ff
ic

e
2

R
o

o
m

 0
R

o
o
m

 1

CoSLAM ESLAM Ours Ground TruthNICE-SLAM

Figure 5. The render visualization results on the Replica dataset of the proposed GS-SLAM and state-of-the-art methods. GS-SLAM can
generate much more high-quality and realistic images than the other methods, especially around the object boundaries.

Method Metric Room 0 Room 1 Room 2 Office 0 Office 1 Office 2 Office 3 Office 4 Avg. FPS.

NICE-SLAM [51]
PSNR [dB] ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809 0.30
LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion∗ [45]
PSNR [dB] ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801 3.88
LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

CoSLAM [38]
PSNR [dB] ↑ 27.27 28.45 29.06 34.14 34.87 28.43 28.76 30.91 30.24
SSIM ↑ 0.910 0.909 0.932 0.961 0.969 0.938 0.941 0.955 0.939 3.68
LPIPS ↓ 0.324 0.294 0.266 0.209 0.196 0.258 0.229 0.236 0.252

ESLAM [9]
PSNR [dB] ↑ 25.32 27.77 29.08 33.71 30.20 28.09 28.77 29.71 29.08
SSIM ↑ 0.875 0.902 0.932 0.960 0.923 0.943 0.948 0.945 0.929 2.82
LPIPS ↓ 0.313 0.298 0.248 0.184 0.228 0.241 0.196 0.204 0.336

Ours
PSNR [dB] ↑ 31.56 32.86 32.59 38.70 41.17 32.36 32.03 32.92 34.27
SSIM ↑ 0.968 0.973 0.971 0.986 0.993 0.978 0.970 0.968 0.975 386.91
LPIPS ↓ 0.094 0.075 0.093 0.050 0.033 0.094 0.110 0.112 0.082

Table 4. Rendering Performance on Replica [28]. We outperform existing dense neural RGBD methods on the commonly reported
rendering metrics. Note that GS-SLAM achieves 386 FPS on average, benefitting from the efficient Gaussian scene representation.

4.3. Rendering Evaluation

We compare the rendering performance of the proposed GS-
SLAM with the neural visual SLAM methods in Tab. 4. The
results show that GS-SLAM achieves the best performance
in all the metrics. Our method significantly outperforms
the second-best methods CoSLAM [38], ESLAM [9] and
NICE-SLAM [51] by 1.52 dB in PSNR, 0.027 in SSIM and
0.12 in LPIPS, respectively. It is noticeable that GS-SLAM
achieves 386 FPS rendering speed on average, which is
100× faster than the second-best method Vox-Fusion [45].
This excellent rendering performance is attributed to the ef-
ficient 3d Gaussian rendering pipeline and can be further ap-
plied to real-time downstream tasks, such as VR [4], robot
navigation [6] and autonomous driving [2]. The visual-
ization results in Fig. 5 show that GS-SLAM can generate

much more high-quality and realistic images than the other
methods, especially in edge areas with detailed structures.
While NICE-SLAM [51] causes severe artifacts and blurs,
CoSLAM [38] and ESLAM [9] generate blur around the
image boundaries.

4.4. Runtime Analysis

Tab. 5 illustrates the runtime and memory usage of GS-
SLAM and the state-of-the-art methods on the Room 0
scene in the Replica dataset. We report the parameters of
the neural networks and the memory usage of the scene
representation. The results show that GS-SLAM achieves
a competitive running speed with 8.34 FPS compared to the
other Radiance Fields-based vSLAMs. Note that we do not
use any neural network decoder in our system, which results
in the zero learnable parameter. However, the 3D Gaussian

7

Table 5. Runtime and Memory Usage on Replica Room 0. The
decoder parameters and embedding denote the parameter number
of MLPs and the memory usage of the scene representation.

Method Tracking Mapping System Decoder Scene
[ms×it] ↓ [ms×it] ↓ FPS ↑ param ↓ Embedding↓

Point-SLAM [24] 0.06 × 40 34.81 × 300 0.42 0.127 M 55.42 MB
NICE-SLAM [51] 6.64 × 10 28.63 × 60 2.91 0.06 M 48.48 MB
Vox-Fusion [45] 0.03 × 30 66.53 × 10 1.28 0.054 M 1.49 MB

CoSLAM [45] 6.01 × 10 13.18 × 10 16.64 1.671 M —
ESLAM [45] 6.85 × 8 19.87 × 15 13.42 0.003 M 27.12 MB
GS-SLAM 11.9 × 10 12.8 × 100 8.34 0 M 198.04 MB

Table 6. Ablation of the adaptive 3D Gaussian expansion strat-
egy on #Room0 subset of the Replica Dataset.

Setting # Room0.
ATE↓ Depth L1↓ Precision↑ Recall ↑ F1↑ PSNR↑ SSIM↑ LPIPS↓

w/o add ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
w/o delete 0.58 1.68 53.55 49.32 51.35 31.22 0.967 0.094

w/ add & delete 0.48 1.31 64.58 61.29 62.89 31.56 0.968 0.094

scene representations of GS-SLAM consume 198.04 MB
memory, 4× larger than the second large method NICE-
SLAM [51]. The memory usage is mainly caused by a
large number of 3D Gaussian points in the scene represen-
tation for obtaining a detailed and dense map, which is a
common constraint among Gaussian splatting-based 3D re-
construction methods. Despite this, we still achieve a 20
× faster FPS compared to the similar point-based method
Point-SLAM [24].

4.5. Ablation Study

We perform the ablation of GS-SLAM on #Room0 of the
Replica to evaluate the effectiveness of depth supervision,
coarse to fine tracking, and expansion strategy for mapping.
Effect of our expansion strategy for mapping. Tab. 6
shows the ablation of our proposed expansion strategy for
mapping. The results illustrate that the expansion strategy
can significantly improve the tracking and mapping per-
formance. The implementation w/o adding means that we
only initialize 3D Gaussian in the first frame and optimize
the scene without adding new points. However, this strat-
egy completely crashes because the density control in [11]
can not handle real-time mapping tasks without an accurate
point cloud input. Besides, the implementation w/o dele-
tion suffers from a large number of redundant and noisy
3D Gaussian, which causes undesirable supervision. In
contrast, the proposed expansion strategy effectively im-
proves the tracking and mapping performance by 0.1 in
ATE and 11.97 in Recall by adding more accurate con-
straints for the optimization. According to the visualiza-
tion results in Fig. 6, our full implementation achieves more
high-quality and detailed rendering and reconstruction re-
sults than the w/o delete strategy.
Effect of depth supervision. Tab. 7 illustrates quantita-
tive evaluation using depth supervision in mapping. In
contrast to the original color-only supervision in [11], the
depth supervision can significantly improve the tracking

Table 7. Depth supervision ablation on #Room0 of Replica.

Setting # Room0.
ATE↓ Depth L1↓ Precision↑ Recall ↑ F1↑ PSNR↑ SSIM↑ LPIPS↓

w/o Depth 0.80 3.21 14.28 15.01 14.63 29.76 0.956 0.107

w/ Depth 0.48 1.31 64.58 61.29 62.89 31.56 0.968 0.094

Table 8. Ablation of the coarse to fine tracking strategy on
#Room0 subset of the Replica dataset.

Setting # Room0.
ATE↓ Depth L1↓ Precision↑ Recall ↑ F1↑ PSNR↑ SSIM↑ LPIPS↓

Coarse 0.91 1.48 59.68 57.54 56.50 29.13 0.954 0.120
Fine 0.49 1.39 62.61 59.18 61.29 30.84 0.964 0.096
Coarse to fine 0.48 1.31 64.58 61.29 62.89 31.56 0.968 0.094

R
oo

m
0

w/o Delete StrategyOur Expansion Strategy

Figure 6. Rendering and mesh visulization of the adaptive 3D
Gaussian expansion ablation on #Room0 subset of Replica.

and mapping performance by providing accurate geometry
constraints for the optimization. Our implementation with
depth achieves better tracking ATE of 0.48, mapping preci-
sion of 64.58, and rendering PSNR of 31.56 compared with
the implementation without depth supervision.
Effect of coarse to fine tracking. According to the results
in Tab. 8, the proposed coarse-to-fine tracking strategy per-
forms best in all tracking, mapping, and rendering metrics.
Compared with fine tracking, the coarse to fine tracking
strategy significantly improves the performance by 0.01 in
tracking ATE, 2.11 in Recall, and 0.72 in PSNR. Although
the fine strategy surpasses the coarse strategy in precision,
it suffers from the artifacts and noise in the reconstructed
scene, leading to a fluctuation optimization. The coarse-
to-fine strategy effectively avoids noise reconstruction and
improves accuracy and robustness.

5. Conclusion and Limitations
We presented GS-SLAM, a dense visual SLAM approach
that takes advantage of fast and high-quality rendering su-
periorities of 3D Gaussian Splatting. The proposed adaptive
3D Gaussian expansion strategy and coarse-to-fine camera
tracking technique enable GS-SLAM to dynamically recon-
struct detailed, dense maps and effectively produce a ro-
bust camera pose estimation. We demonstrated GS-SLAM
through extensive experiments that our approach achieves
competitive performance in both reconstruction and local-
ization with much lower time consumption, resulting in a

8

better balance between running speed and accuracy.
Limitations. Our method relies on the depth sensor read-
ing to initialize and update 3D Gaussians. In environments
where high-quality depth information is unavailable, the ef-
fectiveness of this system may be compromised. We be-
lieve a better optimization method can be designed to up-
date the initial 3D Gaussian position on the fly. Also, our
method has a high memory usage when applied to large-
scale scenes, and we hope to address this problem in future
work via incorporating neural scene representations.

References
[1] Michael Bloesch, Jan Czarnowski, Ronald Clark, Stefan

Leutenegger, and Andrew J. Davison. Codeslam - learning
a compact, optimisable representation for dense visual slam.
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2560–2568, 2018. 2

[2] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien
Glaser. Simultaneous localization and mapping: A survey of
current trends in autonomous driving. IEEE Transactions on
Intelligent Vehicles, 2:194–220, 2017. 7

[3] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using
gaussian splatting. ArXiv, abs/2309.16585, 2023. 3

[4] Parth Rajesh Desai, Pooja Nikhil Desai, Komal Deepak
Ajmera, and Khushbu Mehta. A review paper on oculus rift-a
virtual reality headset. ArXiv, abs/1408.1173, 2014. 7

[5] Hugh F. Durrant-Whyte and Tim Bailey. Simultaneous local-
ization and mapping: part i. IEEE Robotics & Automation
Magazine, 13:99–110, 2006. 1

[6] Christian Häne, Christopher Zach, Jongwoo Lim, Ananth
Ranganathan, and Marc Pollefeys. Stereo depth map fusion
for robot navigation. 2011 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 1618–1625,
2011. 7

[7] Jiahui Huang, Shi-Sheng Huang, Haoxuan Song, and Shi-
Min Hu. Di-fusion: Online implicit 3d reconstruction with
deep priors. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8932–8941, 2021. 6

[8] Xudong Jiang, Lifeng Zhu, Jia Liu, and Aiguo Song. A slam-
based 6dof controller with smooth auto-calibration for vir-
tual reality. The Visual Computer, 39:3873 – 3886, 2022.
1

[9] Mohammad Mahdi Johari, Camilla Carta, and Franccois
Fleuret. Eslam: Efficient dense slam system based on hy-
brid representation of signed distance fields. CVPR, 2023. 1,
2, 5, 6, 7

[10] Olaf Kähler, Victor Adrian Prisacariu, Julien P. C. Valentin,
and David William Murray. Hierarchical voxel block hashing
for efficient integration of depth images. IEEE Robotics and
Automation Letters, 1:192–197, 2016. 1

[11] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 2, 3, 8

[12] Leonid Keselman and Martial Hebert. Approximate differ-
entiable rendering with algebraic surfaces. In European Con-
ference on Computer Vision (ECCV), 2022. 2

[13] Leonid Keselman and Martial Hebert. Flexible techniques
for differentiable rendering with 3d gaussians. arXiv preprint
arXiv:2308.14737, 2023. 2

[14] Georg S. W. Klein and David William Murray. Parallel track-
ing and mapping on a camera phone. 2009 8th IEEE Inter-
national Symposium on Mixed and Augmented Reality, pages
83–86, 2009. 2

[15] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by persis-
tent dynamic view synthesis. ArXiv, abs/2308.09713, 2023.
2, 3

[16] Robert Maier, Raphael Schaller, and Daniel Cremers. Ef-
ficient online surface correction for real-time large-scale 3d
reconstruction. ArXiv, abs/1709.03763, 2017. 1

[17] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1

[18] Raul Mur-Artal and Juan D. Tardós. Orb-slam2: An open-
source slam system for monocular, stereo, and rgb-d cam-
eras. IEEE Transactions on Robotics, 33:1255–1262, 2016.
1, 6

[19] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J. Davison, Push-
meet Kohli, Jamie Shotton, Steve Hodges, and An-
drew William Fitzgibbon. Kinectfusion: Real-time dense
surface mapping and tracking. 2011 10th IEEE International
Symposium on Mixed and Augmented Reality, pages 127–
136, 2011. 1

[20] Richard A. Newcombe, S. Lovegrove, and Andrew J. Davi-
son. Dtam: Dense tracking and mapping in real-time. ICCV,
pages 2320–2327, 2011. 2

[21] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and
Marc Stamminger. Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics (TOG),
32:1 – 11, 2013. 1

[22] Gerhard Reitmayr, Tobias Langlotz, Daniel Wagner,
Alessandro Mulloni, Gerhard Schall, Dieter Schmalstieg,
and Qi Pan. Simultaneous localization and mapping for aug-
mented reality. 2010 International Symposium on Ubiqui-
tous Virtual Reality, pages 5–8, 2010. 1

[23] Fabio Ruetz, Emili Hernández, Mark Pfeiffer, Helen
Oleynikova, Mark Cox, Thomas Lowe, and Paulo Vini-
cius Koerich Borges. Ovpc mesh: 3d free-space repre-
sentation for local ground vehicle navigation. 2019 Inter-
national Conference on Robotics and Automation (ICRA),
pages 8648–8654, 2018. 1

[24] Erik Sandström, Yue Li, Luc Van Gool, and Martin R. Os-
wald. Point-slam: Dense neural point cloud-based slam. In
ICCV, 2023. 2, 5, 6, 8

[25] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016. 3

[26] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. Bad
slam: Bundle adjusted direct rgb-d slam. 2019 IEEE/CVF

9

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 134–144, 2019. 2

[27] Thomas Schops, Torsten Sattler, and Marc Pollefeys.
BAD SLAM: Bundle adjusted direct RGB-D SLAM. In
CVF/IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 6

[28] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen,
Erik Wijmans, Simon Green, Jakob J. Engel, Raul Mur-
Artal, Carl Yuheng Ren, Shobhit Verma, Anton Clarkson,
Ming Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June Yon,
Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales,
Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis
Savva, Dhruv Batra, Hauke Malte Strasdat, Renzo De Nardi,
Michael Goesele, S. Lovegrove, and Richard A. Newcombe.
The replica dataset: A digital replica of indoor spaces. ArXiv,
abs/1906.05797, 2019. 5, 7

[29] J. Stückler and Sven Behnke. Multi-resolution surfel maps
for efficient dense 3d modeling and tracking. J. Vis. Com-
mun. Image Represent., 25:137–147, 2014. 1

[30] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram
Burgard, and Daniel Cremers. A benchmark for the evalua-
tion of RGB-D SLAM systems. In International Conference
on Intelligent Robots and Systems (IROS). IEEE/RSJ, 2012.
5, 6

[31] Edgar Sucar, Kentaro Wada, and Andrew J. Davison.
Nodeslam: Neural object descriptors for multi-view shape
reconstruction. 2020 International Conference on 3D Vision
(3DV), pages 949–958, 2020. 2

[32] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davi-
son. imap: Implicit mapping and positioning in real-time.
ICCV, 2021. 1, 2, 5, 6

[33] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang
Zeng. Dreamgaussian: Generative gaussian splatting for ef-
ficient 3d content creation. ArXiv, abs/2309.16653, 2023. 3

[34] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. In Neural Infor-
mation Processing Systems, 2021. 2

[35] Andreas Langeland Teigen, Yeonsoo Park, Annette Stahl,
and Rudolf Mester. Rgb-d mapping and tracking in a
plenoxel radiance field. ArXiv, abs/2307.03404, 2023. 2

[36] Charalambos Theodorou, Vladan Velisavljevic, Vladimir
Dyo, and Fredi Nonyelu. Visual slam algorithms and their
application for ar, mapping, localization and wayfinding. Ar-
ray, 15:100222, 2022. 1

[37] Angtian Wang, Peng Wang, Jian Sun, Adam Kortylewski,
and Alan Yuille. Voge: a differentiable volume renderer
using gaussian ellipsoids for analysis-by-synthesis. arXiv
preprint arXiv:2205.15401, 2022. 2

[38] Hengyi Wang, Jingwen Wang, and Lourdes de Agapito. Co-
slam: Joint coordinate and sparse parametric encodings for
neural real-time slam. CVPR, 2023. 1, 5, 6, 7

[39] Kaixuan Wang, Fei Gao, and Shaojie Shen. Real-time
scalable dense surfel mapping. 2019 International Confer-
ence on Robotics and Automation (ICRA), pages 6919–6925,
2019. 1

[40] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 5

[41] Thomas Whelan, Michael Kaess, Maurice F. Fallon, Hor-
dur Johannsson, John J. Leonard, and John B. McDonald.
Kintinuous: Spatially extended kinectfusion. In AAAI, 2012.
2

[42] Thomas Whelan, John McDonald, Michael Kaess, Maurice
Fallon, Hordur Johannsson, and John J. Leonard. Kintinu-
ous: Spatially extended kinectfusion. In Proceedings of RSS
’12 Workshop on RGB-D: Advanced Reasoning with Depth
Cameras, 2012. 6

[43] Thomas Whelan, Stefan Leutenegger, Renato Salas-Moreno,
Ben Glocker, and Andrew Davison. Elasticfusion: Dense
slam without a pose graph. In Robotics: Science and Systems
(RSS), 2015. 1, 6

[44] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
ArXiv, abs/2310.08528, 2023. 2, 3

[45] Xingrui Yang, Hai Li, Hongjia Zhai, Yuhang Ming, Yuqian
Liu, and Guofeng Zhang. Vox-fusion: Dense tracking and
mapping with voxel-based neural implicit representation.
2022 IEEE International Symposium on Mixed and Aug-
mented Reality (ISMAR), pages 499–507, 2022. 2, 5, 6, 7,
8

[46] Ziyi Yang, Xinyu Gao, Wenming Zhou, Shaohui Jiao,
Yuqing Zhang, and Xiaogang Jin. Deformable 3d gaussians
for high-fidelity monocular dynamic scene reconstruction.
ArXiv, abs/2309.13101, 2023. 3

[47] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li
Zhang. Real-time photorealistic dynamic scene represen-
tation and rendering with 4d gaussian splatting. ArXiv,
abs/2310.10642, 2023. 3

[48] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng
Zhang, Wenyu Liu, Qi Tian, and Xinggang Wang. Gaussian-
dreamer: Fast generation from text to 3d gaussian splatting
with point cloud priors. ArXiv, abs/2310.08529, 2023. 3

[49] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE conference on com-
puter vision and pattern recognition, pages 586–595, 2018.
6

[50] Shuaifeng Zhi, Michael Bloesch, Stefan Leutenegger, and
Andrew J. Davison. Scenecode: Monocular dense semantic
reconstruction using learned encoded scene representations.
2019 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 11768–11777, 2019. 2

[51] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R. Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
CVPR, 2021. 1, 2, 5, 6, 7, 8

[52] Wojciech Zielonka, Timur M. Bagautdinov, Shunsuke Saito,
Michael Zollhofer, Justus Thies, and Javier Romero. Driv-
able 3d gaussian avatars. 2023. 3

[53] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and
Markus H. Gross. Ewa volume splatting. Proceedings Visu-
alization, 2001. VIS ’01., pages 29–538, 2001. 3

10

	. Introduction
	. Related Work
	. Methodology
	. 3D Gaussian Scene Representation
	. Adaptive 3D Gaussian Expanding Mapping
	. Tracking and Bundle Adjustment

	. Experiment
	. Experimental Setup
	. Evaluation of Localization and Mapping
	. Rendering Evaluation
	. Runtime Analysis
	. Ablation Study

	. Conclusion and Limitations

